W2-1: English vowels and Praat

JAPN398D: The Sounds and Dialects of Japanese 9/6/2023

Today's class

- Diacritics
- Vowels
 - Tongue height
 - Tongue advancement
 - Lip rounding
 - (Tenseness)

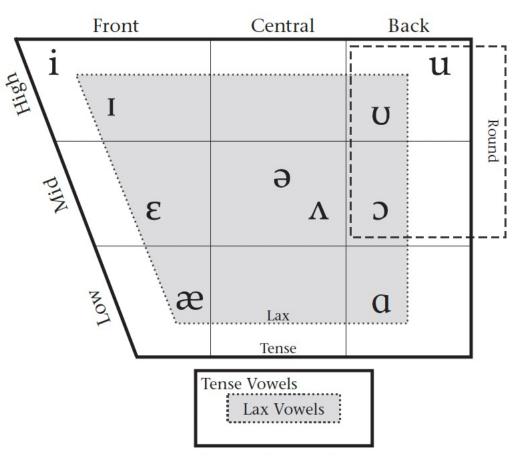
- Syllabic consonants
- Acoustic displays
 - Waveforms
 - Spectrograms
 - Pitch tracks
- Praat

• Sonority hierarchy

Diacritics

- There are two kinds of transcription.
 - Broad transcription provides as few details as possible.
 - Narrow transcription provides as many details as possible.
- Example
 - The broad transcription of *peak* is /pik/.
 - The narrow transcription of *peak* is [p^hik].
- In general, slashes // are used for broad transcription, while square brackets [] are used for narrow transcription.

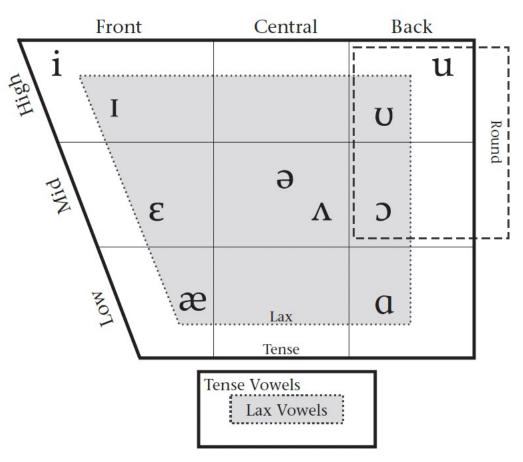
Diacritics


- Diacritics are used for narrow transcription.
- Aspiration is a strong puff of air after the release of a closure.
 - The diacritic for aspiration is ^h.
 - A piece of paper in front of your mouth moves!
- In English, syllable-initial voiceless stops are aspirated.
 - e.g. peak [p^hik] vs. speak [spik]

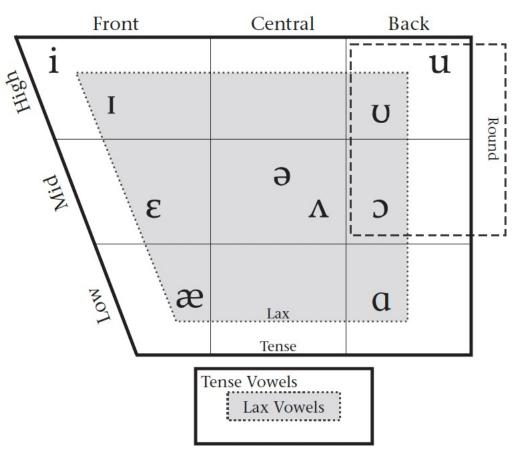
Diacritics

- The diacritic for voicelessness is .
 - e.g. English (some speakers): *witch* [wɪtʃ] vs. *which* [wɪtʃ]
- Devoicing is a phonological process where a voiced sound becomes voiceless (e.g. /b, d, g/ > [p, t, k]).
 - Stops, fricatives, and affricates have symbols for voiced and voiceless sounds.
 - The other sounds, including vowels, do not have symbols for voiceless sounds.
 - We will discuss vowel devoicing in Japanese in this class.

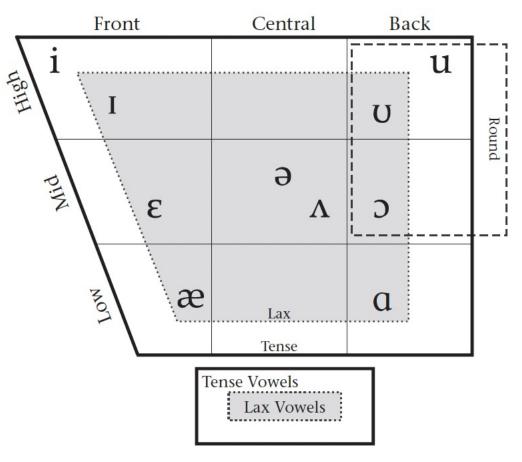
- 3 parameters for consonants
 - Voicing
 - Place of articulation
 - Manner of articulation
- Vowels are voiced by default.
 - The Voicing feature is not required!
- Vowels involve no constriction of the airstream.
 - Place of articulation and manner of articulation do not work!


- Vowels have the following 3(+1) parameters.
 - Tongue height
 - Tongue advancement
 - Lip rounding
 - (Tenseness)
- American Newscaster English has 10 vowels (monophthongs).

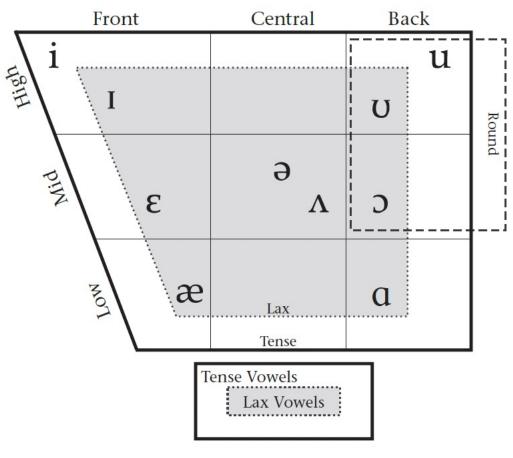
American Newscaster English vowels Language Files, p. 59


7

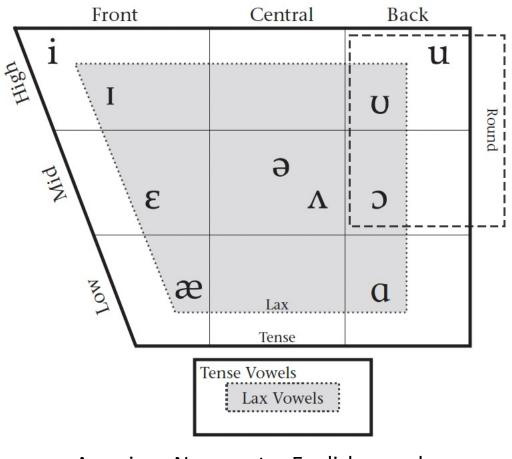
IPA	Articulatory description	Example
i	High front unrounded	b <mark>ea</mark> t
I	(Semi-)high front unrounded	b <mark>i</mark> t
3	(Lower-)mid front unrounded	b <mark>e</mark> t
æ	(Semi-)low front unrounded	bat
a	Low back unrounded	box
Λ	(Lower-)mid back unrounded	b <mark>u</mark> t
С	(Lower-)mid back rounded	boss
υ	(Semi-)high back rounded	b <mark>oo</mark> k
u	High back rounded	boot
ə	Mid central unrounded (Schwa: reduced vowel)	baton



Vance (2008): Table 1-1


- Tongue height
 - The highest point of the tongue is close to the roof of the mouth in high vowels ← → low vowels.
- High: i, u > ı, ʊ
- Mid: ə > ε, ∧, ɔ
- Low: æ > a

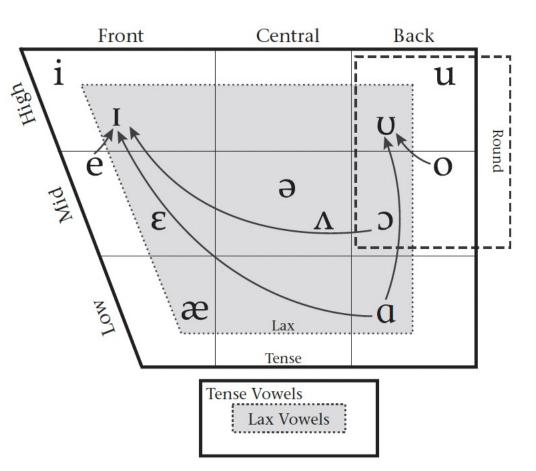
- Tongue advancement
 - The body of the tongue is advanced in front vowels ←→ back vowels.
- Front: i, 1, ε, æ
- Central: ə
- Back: u, ʊ, ɔ, ʌ, ɑ



- Lip rounding
- Rounded: u, ʊ, ɔ
- Unrounded: i, I, ε, æ, α, Λ, ə
- Non-low back vowels are rounded by default.

• Tenseness

- Tense vowels can end a syllable, but lax vowels cannot.
- Tense vowels
 - /i/: *beat* /bit/, *he* /hi/
 - /u/: boot /but/, who /hu/
- Lax vowels
 - /1/: bit /bɪt/
 - /ʊ/: book /bʊk/



- Two facts are relevant to Japanese phonology.
- 1. /i/ and /u/ are high vowels.
- 2. Non-low back vowels (e.g. /u/) are rounded by default.

- So far, we have seen 10 monophthongs (simple vowels) in American English.
- American English also has 5 diphthongs (complex vowels).
 - There is a transition from one vowel to another vowel.
 - Each diphthong is a one sound.

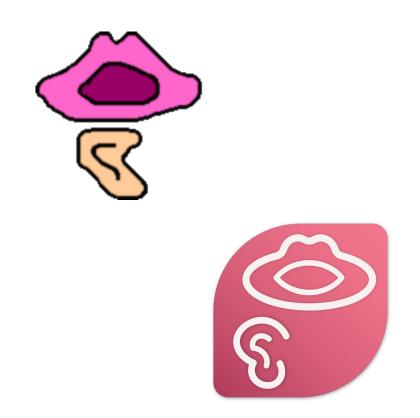
IPA	Articulatory description	Example
еі	(Higher-)mid front unrounded	say
	(Semi-)high front unrounded	
aı	Low back unrounded	hi
	(Semi-)high front unrounded	
IC	(Higher-)mid back rounded	soy
	(Semi-)high front unrounded	
υΩ	(Higher-)mid back rounded	SO
	(Semi-)high back rounded	
ບລ	Low back unrounded	how
	(Semi-)high back rounded	

Vance (2008): Table 1-2 Note: There are some minor changes from Vance's descriptions.

Sonority hierarchy

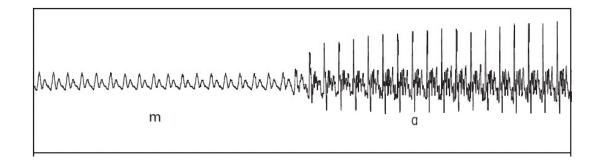
- Sonority hierarchy is a ranking according to sonority.
- The more sonorous a sound is, the more audible and louder it is.
- Sonorants
- Obstruents (including affricates)

- 1. Vowels (Most sonorous)
- 2. Glides
- 3. Liquids
- 4. Nasals
- 5. Voiced fricatives
- 6. Voiceless fricatives
- 7. Voiced stops
- 8. Voiceless stops (Lease sonorous)

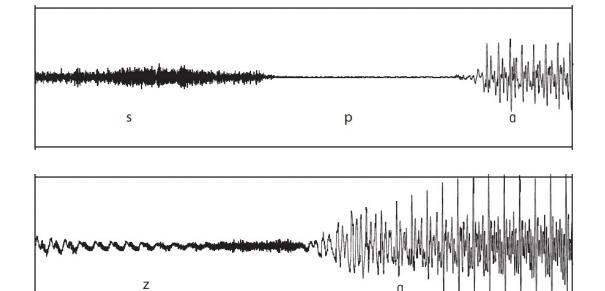

(cf. Clements 1990)

Syllabic consonants

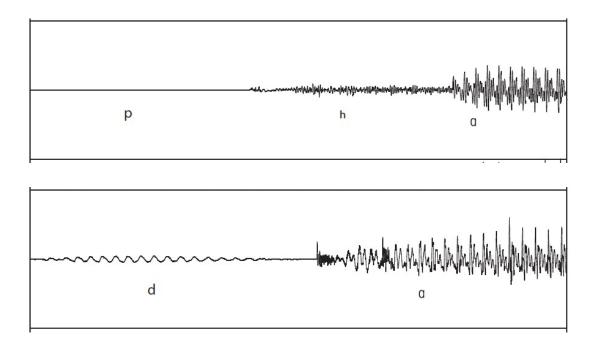
- Sonorant consonants (liquids and nasals) can act like vowels in syllables in English.
 - is the diacritic for syllabicity.
- /l/ in English \rightarrow e.g. *castle* /kæ.səl/ or [kæ.s]
- / $_{\rm J}$ in English \rightarrow e.g. *herd* / hə_{\rm J}d/ or [h_{\rm J}d]
- /m/ in English → e.g. *rhythm* /ɹɪ.ðəm/ or [ɹɪ.ðm]
- /n/ in English → e.g. *fasten* /fæ.sən/ or [fæ.s<code>ņ</mark>]</code>


Acoustic displays

- Waveforms
- Spectrograms
- Pitch tracks
- Praat (Software)


- Waveforms show amplitude (= loudness, sonority) over time.
- Waveforms include information about manner of articulation (and voicing).
 - Information about place of articulation is not included.

- Vowels have the <u>highest relative</u> <u>amplitude</u> and <u>periodic waves</u>.
- Sonorant consonants are similar to vowels, but <u>the amplitude is</u> <u>lower</u>.

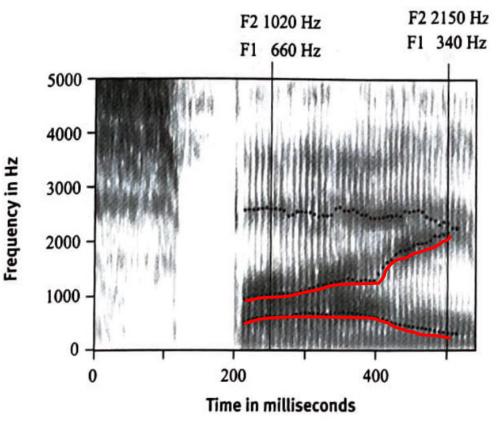

Zsiga (2013): Figure 7.8

- Voiceless fricatives have an <u>aperiodic</u> pattern (= random noise).
- Voiced fricatives have both periodic and aperiodic patterns.

Zsiga (2013): Figure 7.8

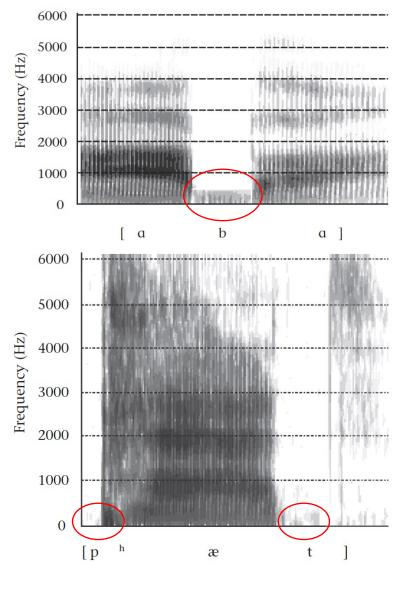
 Voiceless stops have <u>zero</u> <u>amplitude</u>, usually followed by aspiration.

 Voiced stops have <u>periodic</u> <u>waves</u>, but <u>the amplitude is very</u> <u>low</u>.


Zsiga (2013): Figure 7.8

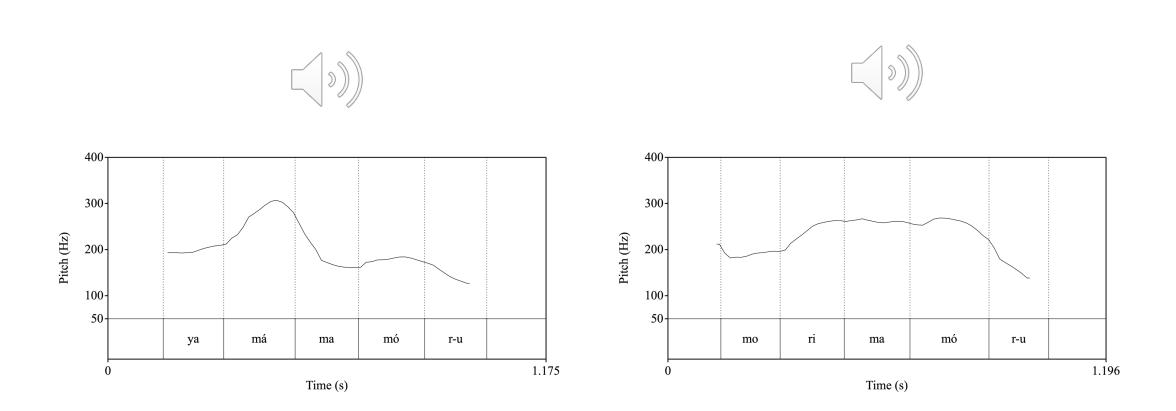
- Spectrograms are three-dimensional displays of speech sounds.
 - Vertical axis: Frequency (Hz)
 - Horizontal axis: Time
 - Degree of darkness: Amplitude
- Identifying sounds in spectrograms
 - <u>https://home.cc.umanitoba.ca/~krussll/phonetics/acoustic/spectrogram-sounds.html</u>

- Fundamental frequency (called F0; Language Files, p. 698)
 - The rate at which the vocal folds vibrate during voicing.
 - The frequency of repetition of a periodic wave.
 - Closely related to pitch.
- Formant (Language Files, p. 697)
 - Resonant frequency that amplifies some groups of harmonics above others; appears as <u>a dark band on a spectrogram</u>.


- First formant (F1)
 - Inversely correlated with the tongue height of a vowel.
 - High F1 \rightarrow Low vowels
 - Low F1 \rightarrow High vowels
- Second formant (F2)
 - Correlated with the tongue advancement of a vowel.
 - High F2 \rightarrow Front vowels
 - Low F2 \rightarrow Back vowels

a: Low back roundedI: (Semi-)high front unrounded

Vance (2008): Figure 1-15


- A dark bar at the bottom of a spectrogram tells us that the sound is voiced.
- This dark bar is called a voice bar.

Language Files, p. 82

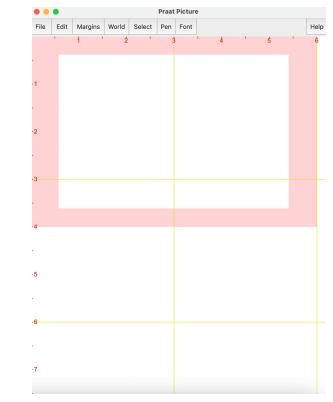
Pitch tracks

- Pitch tracks show fundamental frequency (F0; \approx pitch) over time.
- Pitch tracks are useful for research on pitch accent.
- You must use voiced sounds for pitch tracks because voiceless sounds do not have F0.
 - The more sonorant, the better.
 - Sonorant consonants are better than voiced obstruents.

山守る by a female Tokyo speaker

Pitch tracks

森守る by a female Tokyo speaker


Praat

- Praat (<u>https://www.fon.hum.uva.nl/praat/</u>) is a free software for acoustic speech analysis.
- Praat was developed by Paul Boersma and David Weenink of the University of Amsterdam.
 - Praat means talk in Dutch.
- We can make waveforms, spectrograms, and pitch tracks with Praat.

Praat

Praat Objects						
	• • •	Praat Objects				
	New Open Save		Help			
	Objects:					
	Rename Copy					
	Inspect Info					
	Remove					

Praat Picture

- Make waveforms, spectrograms, pitch tracks.
- Practice Tokyo pitch accent.
 - あめ → HL 'rain (雨)' vs. LH 'candy (飴)'
 - はしは → HLL 'chopsticks=TOP (箸は)' vs. LHL 'bridge=TOP (橋は) vs. LHH edge=TOP (端は)'

References

- Boersma, Paul. 2001. Praat, a system for doing phonetics by computer. *Glot International* 5:9/10, 341-345.
- Clements G.N. 1990. The role of sonority cycle in core syllabification. In *Papers in laboratory phonology I*, pp. 283–333.
- Department of Linguistics, The Ohio State University. 2016. Language Files (12th edition). Columbus, OH: The Ohio State University Press.
- Zsiga, Elizabeth C. 2013. *The sounds of language: An introduction to phonetics and phonology*. Wiley-Blackwell.